

PLA Matte Modified Polylactic Acid Filament

Product Description

NHH Modified PLA Filament is a PLA Filament with matte finish when compared with traditional PLA filament. It exhibits matte-look, coarse surface aspect, high stiffness and very good printability.

Genernal Information			
Resin Family:			PLA Compound
Color:			Natural
Form:			Filament
Diameter:			1.75 mm
Feature(s):			· Matte Appearance
			· High Stiffness
			· Very Good Printability
Application(s):			3D Printing (FDM)
Compliance:			· RoHS 2.0
•			· REACH SVHC
Physical	Test Method	Units	Typical Value
Specific Gravity	ISO 1183	g/cm³	1.14
Shore Hardness	ISO 868	Shore D	70
Mechanical	Test Method	Units	Typical Value
Tensile Strength at Yield	ASTM D412 Die C	MPa	48
Elongation at Break	ASTM D412 Die C	%	15
Flexural Strength	ASTM D790	MPa	50
Flexural Modulus	ASTM D790	MPa	1990
Tear Strength	ASTM D624 Die C	N/mm	187
3D-printed (100% in-fill, XY-direction)	Test Method	Units	Typical Value
Tensile Strength at Yield	ASTM D412 Die C	MPa	28
Elongation at Break	ASTM D412 Die C	%	8
00 101 101			
3D-printing condition	Test Method	Units	Typical Value
Extruder Temperature Range		°C	205-225
Platform Temperature			RT-60
Predrying Temperature/duration		°C x hrs.	50 x 2-4
Suggested Platform Material		mm/sss	Painters Tape
Printing Speed		mm/sec	20-60

For additional technical, sales and other assistance: www.nhh.com.hk

Issued date: 22-01-2020

^{*}Disclaimer: The information provided in this documentation corresponds to our knowledge on the subject at the date of its publication and may be subject to revision asnew knowledge and data becomes available. All values reported are typical values based on sample test results and are not a guarantee of performance. The responsibility toconduct testing to determine suitability of use for the particular process or end-use application remains with the customer. NHH does not warrant or assume any liabilitywith regards to the use of the information presented in this document.